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Abstract (for posterity)

I will discuss the design of quantum chemistry codes for
next-generation supercomputers in light of experience with a wide
variety of architectures, including Blue Gene/P, Cray XE,
Infiniband clusters, and NVIDIA GPUs. Programming models and
algorithms that maximize performance will be described in detail.
On the primary topics of this workshop — fault tolerance and
energy efficiency — I will focus on the most obvious sources of
faults (programmer error) and energy inefficiency (suboptimal
algorithms). I will also describe my approach to optimizing
quantum chemistry codes for Blue Gene/Q, which is by far the
most energy efficient supercomputer to date (green500.org).
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Does power matter?

According to Jones, the real issue is delivering science to justify
whatever the power budget is and that human expertise in
algorithms and programming is more expensive than power.

Jeff Hammond CECAM



If power doesn’t matter
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Cray X1E

True globally accessible memory (pointer = node + address).

Vector machines do very well at dense linear algebra.

Cray compilers genuinely good at optimization.

No caches, just load from main memory in O(1) cycles.

Who needs MPI?

According to Buddy Bland, scientists were upset when it was
decommissioned in favor of Jaguar.

18 TF for 1+ MW was justified when Cray XT3/4 could do 10x
better.
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Power matters I

Hardware not designed for HPC, more suitable for Word and FPS.

Two trends in HPC processor architecture:

1 More-of-the-same (MOTS): more cores, more caches, more
bells+whistles.

2 Back-to-the-future (BTTF): vectors - SIMD ala FPU and
SIMT ala GPU.

In reality, we have both MOTS and BTTF in every machine;
integration varies. Tight integration is FPU in the cores ala BG;
loose integration is Cray XK6 (CPU+GPU), although CPU part is
same idea as other short-vector cores but with more NUMA.

Welcome to the future: the kitchen sink approach to architecture
design.
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Power matters II

Power efficiency forces us to use “parallelism all the way down”. . .

Green500 summary:

1 Blue Gene/Q (2097.19 MF/W)

4 Intel+NVIDIA (958.35 MF/W)

14 POWER7 (565.97 MF/W)

19 Cell-based (458.33 MF/W)

21 Intel-only (441.18 MF/W)

You can’t do anything on BGQ without significant parallelism:
10 PF = 48 r = 49,152 n = 786,432 c = 3,145,728 t

3M threads is not business as usual but it’s not like CPU+GPU is
a programmer’s dream.
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Science matters, right?

We are not getting vector machines back because of science. . .

Scientific simulation has to find ways to leverage the commercial
computing fad of the day (GUI, FPS, smartphone,. . . ) unless
someone comes up with 10-100x the money for hardware.
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Power-efficient tensor algorithms

The real work is done by:

Edgar Solomonik
Devin Matthews
Martin Schatz
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Power-efficient algorithms

The most efficient way to minimize power consumption is to do
the same thing in less time.

Given the idle draw of most hardware, you cannot come close to
50% reduction from a power-aware algorithm, but many scientific
algorithms can run 2x faster with superior math.

Power-aware runtimes, etc. are pointless unless they are running
algorithms that are more than big-O notation optimal: both 104n
and n are O(n). Power-efficient O(n3) is asinine compared to
power-hungry O(n).

How much time/money/power is wasted every year because
Top500 doesn’t allow Strassen?
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Tensor Contraction Engine

What does it do?

1 GUI input quantum many-body theory e.g. CCSD.

2 Operator specification of theory.

3 Apply Wick’s theory to transform operator expressions into
array expressions.

4 Transform input array expression to operation tree using many
types of optimization.

5 Produce Fortran+Global Arrays+NXTVAL implementation.

Developer can intercept at various stages to modify theory,
algorithm or implementation.
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The practical TCE – Success stories

First parallel implementation of many (most) CC methods.

First truly generic CC code (not string-based):
{RHF,ROHF,UHF}×CC{SD,SDT,SDTQ}×{T /Λ,EOM,LR/QR}
Most of the largest calculations of their kind employ TCE:
CR-EOMCCSD(T), CCSD-LR α, CCSD-QR β, CCSDT-LR α

Reduces implementation time for new methods from years to
hours, TCE codes are easy to verify.

Significant hand-tuning by Karol Kowalski and others at PNNL
was required to make TCE run efficiently and scale to 1000
processors and beyond.
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Before TCE

CCSD/aug-cc-pVDZ – 192 b.f. – days on 1 processor

Benzene is close to crossover point between small and large.
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Linear response polarizability

CCSD/Z3POL – 1080 b.f. – 40 hours on 1024 processors

This problem is 20,000 times larger on the computer than benzene.

J. Chem. Phys. 129, 226101 (2008).
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Quadratic response hyperpolarizability

CCSD/d-aug-cc-pVTZ – 812 b.f. – 20 hours on 1024 processors

Lower levels of theory are not reliable for this system.

J. Chem. Phys. 130, 194108 (2009).
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Charge-transfer excited-states of biomolecules

CR-EOMCCSD(T)/6-31G* – 584 b.f. – 1 hour on 256 cores

Lower levels of theory are wildly incorrect for this system.
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Excited-state calculation of conjugated arrays

CR-EOMCCSD(T)/6-31+G* – 1096 b.f. – 15 hours on 1024 cores

J. Chem. Phys. 132, 154103 (2010).

Even bigger systems done in Kowalski, et al., JCTC 7, 2200 (2011).
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So what’s the problem?

Pseudocode for Ra,b
i ,j = Rc,d

i ,j ∗ V c,d
a,b :

for i,j in occupied blocks:

for a,b in virtual blocks:

for c,d in virtual blocks:

if symmetry criteria(i,j,a,b,c,d):

if dynamic load balancer(me):

Get block t(i,j,c,d) from T

Permute t(i,j,c,d)

Get block v(a,b,c,d) from V

Permute v(a,b,c,d)

r(i,j,c,d) += t(i,j,c,d) * v(a,b,c,d)

Permute r(i,j,a,b)

Accumulate r(i,j,a,b) block to R
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So what’s the problem?

DLB doesn’t consider distance of data or reuse.

No reuse of permuted local patches:
e.g. Permute t(i,j,c,d) called O(N2

tiles) times.

Permute is an evil version of STREAM:
∀i , j , k , l : Aijkl = BP(ijkl).

Get is effectively two-sided.

DLB requires remote atomics (in general, not in HW).

All-connect topology is bad on a torus. . .
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TCE algorithm topology
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So what’s the solution?

Tensor contractions are like big parallel matrix multiplication
operations, so why not reuse those algorithms (Cannon, SUMMA)?

+ Use collective communication instead of one-sided, which is
optimal on Blue Gene (2x BW in bcast).

+ Minimal local operations (computation and data reshuffling).

− Symmetry is hard to handle (DLB and one-sided were used by
TCE for a reason).

− If we do matrix multiplication globally, we have to do
permutation globally, generating alltoall patterns.

The critical challenge is to solve the symmetry issue. . .

Note: Fast collectives are not just a BG feature. One can use
systolic collectives on a Cray if the schedular provides contiguous
partitions.
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Summary

Until someone comes up with a numerical robust reduced-scaling
CC algorithm, the best thing to do is make the existing algorithms
run faster.

Preliminary results suggest we can reduce time-to-solution by 2-5x,
reduce memory usage by 2x and make efficient use of the most
power-efficient architecture available (Blue Gene).

We expect this to increase power-efficiency by 2-5x on the same
hardware and as much as 20x relative to COTS clusters that are
designed to run NWChem.
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OSPRI
New One-Sided PRImitives for Global Arrays and Other

One-sided Models

Most of the real work was done by Sreeram Potluri.
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The PGAS programming model

Use of Global Arrays (GA) by NWChem driven by programmer
productivity:

hides complexity of distributed data

easy dynamic load-balancing

ameliorates local memory limitations

wrappers to math libraries (ScaLAPACK, PeIGS)

ARMCI emerged later as the communication runtime component
within Global Arrays.

The NWChem project started before MPI was available and
certainly before a mature set of libraries were built upon it.
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Global Arrays behavior

GA Get arguments: handle, global indices, pointer to target buffer

1 translate global indices to rank plus local indices

2 issue remote get operations to each rank

3 remote packing of non-contiguous data

4 packed buffer arrives at caller

5 local buffer assembled
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Global Arrays components

GA

A
ddress

T
ransla tion

D
ata

M
ovem

ent

M
em
ory

A
llocati on

Parallel math capability
is orthogonal because
ScaLAPACK and PeIGS
use MPI.

This abstraction is not
implemented effectively.
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Overview

NWChemNWChem

Global Arrays

ARMCI

GA 
interface

ARMCI 
interface

Put, Get, Acc (CSI)

Rmw (scalar ints)

Fence, Sync
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Modern System Design Points

Torus topology (2.5-6D)

Lightweight Linux(-like) OS

Low-latency, high-injection NIC

RDMA with offloading

MPI+OpenMP, other hybrids

HW GAS support

Reliable, connectionless networks

HW collectives

Some systems (BG) provide HW active-messages.
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Design by benchmarking

Want quantitatize answers for:

Accumulate: interrupts versus polling (CHT)?

Non-contiguous: direct versus packing?

Local: DMA versus memcpy?

Local: DMA contention?

Remote completion: ack versus flush?

Packing: inline versus handoff (CHT only)?

Buffering: heap or internal?

Buffering: handling resource exhaustion.

Whenever the answer is usage-dependant, we use a tunable
runtime parameter.
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Crossover for packing

0	
  

1000	
  

2000	
  

3000	
  

4000	
  

5000	
  

6000	
  

7000	
  

8	
   16
	
  

32
	
  

64
	
  

12
8	
  

25
6	
  

51
2	
   1K
	
  

2K
	
  

La
te
nc
y	
  
(u
s)
	
  

Chunk	
  Size	
  (Bytes)	
  

Direct	
  Put	
  

Packed	
  Send	
  

Jeff Hammond CECAM



Overhead for thread-safety

DCMF critical sections are a heavy hammer.
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Versus other runtimes

These ARMCI results much improved over original implementation.
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GA Put/Get — 1D remote
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GA Put/Get — 2D remote
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GA Acc — 1D remote
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GA Acc — 2D remote
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Ordering semantics

ARMCI provides location consistency (load-store ordering).

NWChem and other GA apps don’t need this.

Only necessary for conflicting access.

Metadata to detect conflicts from sender is prohibitive.

Push consistency up stack to user: flush as needed.

Cost of ordering grows with system.

Ordering prohibitive when network doesn’t provide it.

OSPRI design philosophy is to be soft on consistency, let the user
(or higher level library) worry about it.
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Effect of ordering semantics
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Programming Blue Gene/Q
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Things I can tell you

I cannot clarify or elaborate on any of the following statements.
Please do not ask.

16-core nodes, 4-way SMT (up to 64 threads per node)

16 Gb memory per node

1.6 GHz

204.8 GFLOP/s per node

48 racks = 49,152 nodes = 786,432 cores

Argonne system is 10 PF.
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Things IBM has said publicly

The following quotes are taken from the abstract alone.
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Network

Source: http://www.hoti.org/hoti19/keynotes/.

“The chip has 11 ports; each port can transmit data at 2
GB/s and simultaneously receive at 2 GB/s for a total
bandwidth of 44 GB/s.”

“The network consists of a five dimensional compute node
torus with a subset of compute nodes using the 11th port to
connect to I/O nodes.”

“Blue Gene/Q machine has approximately 46 times the
bisection bandwidth than that of a first generation Blue
Gene/L machine with the same number of nodes.”

“A single network supports point-to-point and collective
traffic such as MPI all reduces at near link bandwidth.”

“The collectives can be over an entire partition or any
rectangular subset of a partition. The network provides bit
reproducible, single pass floating point collectives.”
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Things IBM has said publicly
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Processor

Source:
http://www.power.org/events/PowerWebinar-03-29-11/

· · · IBM March 29 Webinar - Dr. Luigi.pdf.

Collective and barrier networks are embedded in 5-D torus.

Integer and floating-point addition support in collective
network.

SIMD floating point unit (8 flop/clock).

Speculative multithreading and transactional memory support
with 32 MB of speculative state.

17th Processor core for system functions.
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Programming Blue Gene/Q – Software

All of our efforts are portable to other systems except vector
intrinsics, which are never portable (e.g. SSE).

MPI ranks: 48K (1/n), 800K (1/c) or 3M (1/t)?
Program for 1/n, accept 1/c for unthreadable legacy codes.

Combine task and data parallelism in threading model.

Pthread+OpenMP interoperability is a challenge on BGP and
in general.
TBB porting activities are in-progress. We have TBB on BGP
and POWER7.

Vectorization done via libraries and intrinsics.

Emphasize separation of internode and intranode parallelism,
leading to reuse of internode components on heterogeneous
systems.
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Programming Blue Gene/Q – Algorithms

Hierarchical instead of flat: FMM, tree-codes.

Asynchronous everything (leverage async. coll.).

Topology-aware distributed data-structures (e.g. GPAW on
BGP).

Move away from DLB and 1-sided but use OSPRI when
necessary.
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What is TCE?

1 NWChem users know it as the coupled-cluster module that
supports a kitchen sink of methods.

2 NWChem developers know it as the Python program that
generates item 1.

3 People in this room probably know it as a multi-institutional
collaboration that resulted in item 2 (among other things).
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Summary of TCE module

http://cloc.sourceforge.net v 1.53 T=30.0 s

---------------------------------------------

Language files blank comment code

---------------------------------------------

Fortran 77 11451 1004 115129 2824724

---------------------------------------------

SUM: 11451 1004 115129 2824724

---------------------------------------------

Only <25 KLOC are hand-written; ∼100 KLOC is utility code
following TCE data-parallel template.
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My thesis work

http://cloc.sourceforge.net v 1.53 T=13.0 s

---------------------------------------------

Language files blank comment code

---------------------------------------------

Fortran 77 5757 0 29098 983284

---------------------------------------------

SUM: 5757 0 29098 983284

---------------------------------------------

Total does not include ∼1M LOC that was reused (EOM).

CCSD quadratic response hyperpolarizability was derived,
implemented and verified during a two week trip to PNNL.
Over 100 KLOC were “written” in under an hour.
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The practical TCE – Limitations

What does it NOT do?

Relies upon external (read: hand-written) implementations of
many procedures.

Hand-written procedures define underlying data
representation.

Does not effectively reuse code (TCE needs own runtime).
Of course, 4M LOC in F77 could be 4K LOC in C++.

Ignores some obvious abstraction layers and hierarchical
parallelism.

None of these shortcomings are intrinsic!

An instantiation of TCE is limited to the set of code
transformations known to the implementer.

Jeff Hammond CECAM



The practical TCE – Performance analysis

Performance TCE in NWChem cannot be understood independent
of GA programming model.

GA couldn’t do block sparse so TCE does its own indexing.
Table lookups are/were a bottleneck.

Suboptimal data representation leads to nonlocal
communication.

Single-level tiling isn’t ideal.

Lack of abstraction for kernel prevents optimization;
e.g. tensor permutations significant portion of wall time.

Time does not permit me to quantify performance issues.

Can all hand-optimizations can be back-ported into TCE?
Is this necessary? What are the challenges of an embedded DSL?
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HPC circa 2012

Systems coming online in 2012 will have 200K+ cores with
significant node-level parallelism both in the processor(s) and the
NIC (e.g. Cray Gemini has 48 ports).

BlueWaters (PERCS): 37,500+ sockets, 8 cores per socket.

Mira (Blue Gene/Q): 49,152 nodes, 1 16-core CPU per node.

Titan (Cray XK): 12,160 nodes, 1 AMD Bulldozer CPU and 1
NVIDIA Kepler GPU per node.

[Details from NCSA, Wikipedia and Buddy Bland’s public slides.]

Node counts not increasing relative to current systems, so
node-level parallelism is our primary challenge.

Process-only parallelism is not optimal for any of these machines.
TCE 2.0 must address heterogeneity.

Jeff Hammond CECAM



Exascale Architecture

10 GB

1000s of threads
(private cache)

per-node
shared memory

~1 million nodes
(hierarchical network)

50 GB/s

300 GB/s300 GB/s 300 GB/s300 GB/s300 GB/s300 GB/s 300 GB/s300 GB/s

10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB
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Coupled-cluster theory

|CC 〉 = exp(T )|0〉
T = T1 + T2 + · · ·+ Tn (n� N)

T1 =
∑
ia

tai â†aâi

T2 =
∑
ijab

tabij â†aâ†bâj âi

|ΨCCD〉 = exp(T2)|ΨHF 〉
= (1 + T2 + T 2

2 )|ΨHF 〉
|ΨCCSD〉 = exp(T1 + T2)|ΨHF 〉

= (1 + T1 + · · ·+ T 4
1 + T2 + T 2

2 + T1T2 + T 2
1 T2)|ΨHF 〉
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Coupled cluster (CCD) implementation

Rab
ij = V ab

ij + P(ia, jb)

[
T ae
ij I be − T ab

im Imj +
1

2
V ab
ef T ef

ij +

1

2
T ab
mnImn

ij − T ae
mj I

mb
ie − Ima

ie T eb
mj + (2T ea

mi − T ea
im)Imb

ej

]
I ab = (−2V mn

eb + V mn
be )T ea

mn

I ij = (2V mi
ef − V im

ef )T ef
mj

I ijkl = V ij
kl + V ij

ef T ef
kl

I iajb = V ia
jb −

1

2
V im
eb T ea

jm

I iabj = V ia
bj + V im

be (T ea
mj −

1

2
T ae
mj )−

1

2
V mi
be T ae

mj

Tensor contractions currently implemented as GEMM plus PERMUTE.
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Hardware Details

CPU GPU
X5550 2 X5550 C1060 C2050

processor speed (MHz) 2660 2660 1300 1150
memory bandwidth (GB/s) 32 64 102 144

memory speed (MHz) 1066 1066 800 1500
ECC available yes yes no yes
SP peak (GF) 85.1 170.2 933 1030
DP peak (GF) 42.6 83.2 78 515

power usage (W) 95 190 188 238

Note that power consumption is apples-to-oranges since CPU does
not include DRAM, whereas GPU does.
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Relative Performance of GEMM

GPU versus SMP CPU (8 threads):
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We expect roughly 4-5 times speedup based upon this evaluation
because GEMM should be 90% of the execution time.
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CPU/GPU CCD

Iteration time in seconds
our DP code X5550

C2050 C1060 X5550 Molpro TCE GAMESS
C8H10 0.3 0.8 1.3 2.3 5.1 6.2
C10H8 0.5 1.5 2.5 4.8 10.6 12.7
C10H12 0.8 2.5 3.5 7.1 16.2 19.7
C12H14 2.0 7.1 10.0 17.6 42.0 57.7
C14H10 2.7 10.2 13.9 29.9 59.5 78.5
C14H16 4.5 16.7 21.6 41.5 90.2 129.3

C20 8.8 29.9 40.3 103.0 166.3 238.9
C16H18 10.5 35.9 50.2 83.3 190.8 279.5
C18H12 12.7 42.2 50.3 111.8 218.4 329.4
C18H20 20.1 73.0 86.6 157.4 372.1 555.5

Our algorithm is most similar to GAMESS and does ∼4 times the
flops as Molpro.
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CPU+GPU CCSD

Iteration time (s)
Hybrid CPU Molpro NWChem PSI3 TCE GAMESS

C8H10 0.6 1.4 2.4 3.6 7.9 8.4 7.2
C10H8 0.9 2.6 5.1 8.2 17.9 16.8 15.3
C10H12 1.4 4.1 7.2 11.3 23.6 25.2 23.6
C12H14 3.3 11.1 19.0 29.4 54.2 64.4 65.1
C14H10 4.4 15.5 31.0 49.1 61.4 90.7 92.9
C14H16 6.3 24.1 43.1 65.0 103.4 129.2 163.7

C20 10.5 43.2 102.0 175.7 162.6 233.9 277.5
C16H18 10.0 38.9 84.1 117.5 192.4 267.9 345.8
C18H12 14.1 57.1 116.2 178.6 216.4 304.5 380.0
C18H20 22.5 95.9 161.4 216.3 306.9 512.0 641.3

Statically distribute most diagrams between GPU and CPU,
dynamically distribute leftovers.
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More hybrid CCSD

Iteration time (s) Speedup
molecule Basis o v Hybrid CPU Molpro CPU Molpro
CH3OH aTZ 7 175 2.5 4.5 2.8 1.8 1.1
benzene aDZ 15 171 5.1 14.7 17.4 2.9 3.4

C2H6SO4 aDZ 23 167 9.0 33.2 31.2 3.7 3.5
C10H12 DZ 26 164 10.7 39.5 56.8 3.7 5.3
C10H12 6-31G 26 78 1.4 4.1 7.2 2.9 5.1

Calculations are small because we are not using out-of-core or
distributed storage, hence are limited by CPU main memory.

Physics- or array-based domain decomposition will lead to
single-node tasks of this size.
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Lessons learned

Do not GPU-ize legacy code!
Must redesign and reimplement (hopefully automatically).

Verification is a pain.

CC possess significant task-based parallelism.

Threading ameliorates memory capacity and BW bottlenecks.
(How many cores required to saturate STREAM BW?)

GEMM and PERMUTE kernels both data-parallel, readily
parallelizable via OpenMP or CUDA.

Careful organization of asynchronous data movement hides
entire PCI transfer cost for non-trivial problems.

Näive data movement leads to 2x for CCSD; smart data
movement leads to 8x.
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Summary of GPU CC

Implemented CCD on GPU and on CPU using
CUDA/OpenMP and vendor BLAS.
Implementation quality is very similar.

Implemented CCSD on CPU+GPU using streams and mild
dynamic load-balancing.

Compared to legacy codes as directly as possible:

Apples-to-apples CPU vs. GPU is 4-5x (as predicted).
Apples-to-oranges us versus them shows 7-10x.
Our CPU code is 2x, so again 4-5x is from GPU.

We have very preliminary MPI results using task parallelism plus
MPI Allreduce.

Load-balancing is the only significant barrier to GA+GPU
implementation.
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Chemistry Details

Molecule o v

C8H10 21 63
C10H8 24 72
C10H12 26 78
C12H14 31 93
C14H10 33 99
C14H16 36 108

C20 40 120
C16H18 41 123
C18H12 42 126
C18H20 46 138

6-31G basis set

C1 symmetry

F and V from GAMESS via disk

Since January . . .

Integrated with PSI3 (GPL).

No longer memory-limited by GPU.

Working on GA-like one-sided.

GPU one-sided R&D since 2009.

Jeff Hammond CECAM



Numerical Precision versus Performance

Iteration time in seconds
C1060 C2050 X5550

molecule SP DP SP DP SP DP

C8H10 0.2 0.8 0.2 0.3 0.7 1.3
C10H8 0.4 1.5 0.2 0.5 1.3 2.5
C10H12 0.7 2.5 0.4 0.8 2.0 3.5
C12H14 1.8 7.1 1.0 2.0 5.6 10.0
C14H10 2.6 10.2 1.5 2.7 8.4 13.9
C14H16 4.1 16.7 2.4 4.5 12.1 21.6

C20 6.7 29.9 4.1 8.8 22.3 40.3
C16H18 9.0 35.9 5.0 10.5 28.8 50.2
C18H12 10.1 42.2 5.6 12.7 29.4 50.3
C18H20 17.2 73.0 10.1 20.1 47.0 86.6

This the apples-to-apples CPU vs. GPU.
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